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Abstract 

There are two classic limiting solutions for the diffrac- 
tion profile and integrated intensity of Bragg reflec- 
tions from semi-infinite perfect crystals. These are the 
Ewald and Darwin solutions for the symmetric Bragg 
case. It is shown that exact values of these limiting 
solutions can be obtained with the use of three con- 
cepts: (1) the kinematic scattering from a small 
absorbing crystal; (2) the Hamilton-Darwin energy 
transfer equations; (3) the dynamic refractive index 
of the crystal. 

I. Introduction 

In 1967 Zachariasen attempted to obtain a general 
solution for the extinction factor in a finite perfect 
crystal. He used the Darwin (1922) energy transfer 
equations to describe the flow of the incident and 
diffracted beams through the crystal and made the 
intuitive conjecture that the coupling coefficient 
between the beams could be represented by the 
kinematic scattering cross section per unit volume 
from a small and perfect crystal. He did not include 
absorption in the small crystal and he made the 
approximation that the wave vectors within the crystal 
were the same as the wave vectors in free space. His 
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treatment did not reproduce the classical dynamical 
theory solutions for the fiat plate of finite thickness, 
which is the only case for which exact solutions are 
available. 

Sabine (1988, 1992) showed that, with the use of 
Hamilton's (1957) generalization of Darwin's 
equations this method led to the exact Ewald (/z = 
0, /zD = 0) solxttion for the integrated intensity in the 
Bragg case, but that the solution obtained for the 
Darwin (/z -~ 0, /zD >> 0) case was in error by a factor 
of one-half. 

In the present work it is shown that, with the 
inclusion of the dynamic refractive index of the crystal 
and explicit allowance for absorption in the calcula- 
tion of the diffraction profile of the small crystal, the 
conjecture by Zachariasen (1967) leads to the exact 
solution for both limits. 

The analysis is given for neutrons for which the 
polarization factor is unity and, by convention, the 
structure factor includes the scattering length. 

2. Notation 

A = ANt F ~ l T / s i n  OB- ANc F'HID. 
D Average path length of the diffracted beam in 

the crystal. 
FH The structure factor of the reflection whose Mil- 

ler indices are H K L  ( FH = F'H + iF~ ). 
g =-F~/FT, .  
k Scattering vector in free space Ilk I = 2(sin 0)/X ]. 
K Scattering vector within the crystal. 
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kB The reciprocal-lattice vector for the reflection 
HKL. 

Ak k - k s .  
n Static refractive index of the crystal. 
Arc Number of unit cells per unit volume. 
T Crystal thickness normal to the diffracting plane 

( T = D sin 0s). 
Y = -Fo/IF'.I+ 7rsin OsAk/NcAIF'.I. 
A The wavelength of the incident radiation. 
/x Linear absorption coefficient (= -2gN~AIF~ ). 
0 Glancing angle of incidence. 
0s The exact Bragg angle. 

3. The Hamilton-Darwin equations 

These equations were introduced by Darwin (1922) 
to describe the energy interchange between the 
incident and diffracted beams as both beams travelled 
through the crystal. The equations were generalized 
by Hamilton (1957) to include removal processes 
other than Bragg scattering. 

The Hamilton-Darwin equations are 

OPi/Oti = TPi + 0.PT (1) 

OPf/Otf= ~'Pf +0.Pi. (2) 

Pi and PI are the power per unit area in the incident 
and diffracted beams respectively at the point in the 
crystal whose coordinates are ti, t I. The axis ti is 
parallel to the incident beam and the axis ty is parallel 
to the diffracted beam. The coupling constant 0. is 
the cross section per unit volume for Bragg scattering 
into the reflection under consideration, while r, which 
is always negative, is the cross section per unit volume 
for all removal processes (including Bragg scattering). 

It will be assumed in this work that absorption and 
Bragg scattering are the only operative removal 
mechanisms. Then ~ -=- (0 .+ /z ) ,  where /z is the 
absorption cross section per unit volume (the linear 
absorption coefficient). 

For the following two cases in which the directions 
of ti and t I coincide the differential equations can be 
integrated to obtain the power in the diffracted beam 
at the exit surface. 
(1) The Laue case, 20s = 0 ° 

~ P ~ e x p ( - t z D ) [ 1 - e x p ( - 2 0 . D ) ]  la.#O (3) f ~ _  l o 

~P~[1 - exp ( -2o 'D)]  /x=0. (4) f l o 

(2) The Bragg case, 20s = 180 ° 

o'Pi ° sinh (aD) 
PY = a cosh (aD) - ~" sinh (aD) '  /z ~ 0 (5) 

with a 2 = ~.2 _ 0.2 

PI=0 .P°D/ ( I+0 .D) ,  /z=0.  (6) 

In (3) to (6) D is the average path length of the 
diffracted beam in the crystal and pO is the power 
incident on the entrance surface. 

In the infinite flat plate of finite thickness the 
Hamilton-Darwin equations lead to the same sol- 
utions for the symmetric Laue case, in which the 
diffracted beam exits from the opposite suface to the 
entrance surface, and for the symmetric Bragg case, 
in which the diffracted beam exits through the 
entrance surface. In each case both beams make equal 
angles with the normal to the plate and D is related 
to the plate thickness, T, by T = D sin 0s for the Bragg 
case and T = D cos 0s in the Laue case. 

4. The evaluation of ¢r 

The coupling coefficient, 0., in the Hamilton-Darwin 
equations must be obtained in terms of crystallo- 
graphic quantities. The starting point for doing this 
is the formula given by Marshall & Lovesey (1971) 
for the differential cross section per unit volume for 
elastic scattering into a single Bragg peak from a large 
defect-free crystal. In the notation of this paper this 
formula is 

d0./dS~-- N~IF.128(k- k.). (7) 

Nc is the number of unit cells per unit volume and 
FH is the structure factor per unit cell. The Debye- 
Waller factor is always included in FH. 

With the use of spherical polar coordinates and 
integration of the delta function over the angular 
variables (Weinstock, 1944) the total cross section for 
scattering into a single Bragg reflection becomes 

0.(Ak)= Qka(Ak) (8) 

where 6 is the Dirac delta function and 

Qk = N2 F ,  2A2/sin 0s. 

Thus the reciprocal-lattice point is scanned in the 
direction of increasing k in slices of thickness 
dk[=  d(Ak)] where 

Ak = k - ks. (9) 

5. Kinematic scattering from a small crystal 

This problem is solved for the non-absorbing crystal 
in most elementary text books on crystallography. 
Wilson (1949) considered the amplitude of scattering 
from a crystal in the shape of a parallelepiped. For 
one atom of unit scattering power per unit cell the 
amplitude of scattering in the neighbourhood of the 
reciprocal-lattice point (H, 0, 0) is given by 

N - 1  

A ( h ) =  Z exp 27rinh, (10) 
n = 0  

where h = aAk. N is the number of unit cells in the 
a direction, in which the interplanar spacing is a. 

To include absorption a damping factor exp (-o~) 
is introduced into (10) leading to 

N - I  

A ( h ) =  Z exp n(2"n'ih-o~). (11) 
n = 0  
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Summation of the geometric progression and multi- 
plication of A by its complex conjugate gives the 
intensity of scattered radiation as 

1 - 2  exp ( - a N )  cos (21rNh) +exp  ( - 2 a N )  
I ( h ) =  

1 - 2  exp ( - a )  cos (2~rh) + exp ( - 2 a )  
(12) 

=exp  [ - ( N - 1 ) a ]  

~sin 2 ( r rNh)+ sinh 2 ( N a / 2 ) }  
x [  ~ - ~ i ~ ( a - -  ~ j .  (13) 

Equation (12) can be integrated (Gradshteyn & 
Ryzhik, 1980) to give 

I (h)  dh = [ 1 - e x p  ( - 2 a N ) ] / [ 1 - e x p  ( - 2 a ) ]  

= exp [ - ( N -  1)a](sinh Na) / ( s inh  a) .  

(14) 

To relate (13) and (14) to (8) a normalized intensity 
/3 (h) is defined by 

~/3(h) dh = 1. 

Then, the division of (13) by (14) leads to 

sinh a 
f l ( h ) - s i n h  (Na)  

j'sin 2 (1rNh) + sinh 2 (Na /2 )~  
x [ ~ l ~ - - ~ ) + s i n h 2  ia---~--) J" (15) 

It is an elementary step to show that a = tza cosec 0B 
where p~ is the linear absorption coefficient and a is 
the interplanar spacing. Also, Na is the thickness of 
the crystal normal to the diffracting plane (T) and 
D- -  T cosec 0B, where D is the average path length 
of the diffracted beam in the crystal. In the cases to 
be considered here the quanti ty/za is very much less 
than unity, h is small and, for glancing angles not 
close to zero, 

N2a {sin2(~'Nh)+sinh2(Na/2)~ 
f l ( h ) - s i n h  ( N a ) ( - ~  i ~-+ - ~ a  / - ~  J 

In (8), the infinitely sharp distribution 3(Ak) must 
be replaced by the distribution function aft(h) which 
satisfies the same normalization condition. 

Then the relationships T-- Na and h = aAk lead 
to 

o- (Ak ) -  QktzDT 
sinh (p.D) 

sin (IrTAk) +sinh 2 (p.O/2)'[ 
x (~rTAk)2+(p.D/2) 2 j .  (16) 

It should be noted that in these equations refraction 
has been neglected and k is the scattering vector 
outside the crystal. 

As a check on the derivation of (16) the kinematic 
diffraction profile for a crystal of unit area corrected 
for absorption will be evaluated in the Bragg case. 

Then 

--~ = trDAB = QkDT exp ( - /xD)  Vi kin 

~sin 2 (TrTAk)+sinh 2 (~D/2) '~ 
× [ (17) 

where AB is the standard absorption factor in the 
Bragg case, given by 

As--  exp ( -p .D)  sinh ( t tD)/( l~D),  

AB-*(2/xD) -1 as D~oo .  

The result (17) is readily corrected for the static 
refractive index by including in Ak a term propor- 
tional to F~. 

Zachariasen (1945, equation 3.139) gives a general 
expression for the power ratio in the Bragg case. His 
kinematic result, which is obtained by allowing the 
reflected intensity to be vanishingly small, is identical 
with (17) corrected for the static refractive index. A 
detailed derivation is given in the Appendix. 

6. The refractive index of the crystal 

To this point it has been assumed that the scattering 
vector inside the crystal is the same as the scattering 
vector outside. The crystal, however, has a small but 
finite refractive index so this assumption is not valid 
and Ak must be replaced by the real part of AK, 
where K is the scattering vector within the crystal. 

When no diffracted beam is present the refractive 
index is given by n = n'+ in" where 

n'= 1 - NcF'oA2/2~r and n"= -NcF~h2/21r. 

When a diffracted beam is excited the concept of a 
definite refractive index must be discarded and 
replaced by refractive indices appropriate to the 
incident and the diffracted beams. 

In this paper it will be assumed that 
(a) the crystal is centrosymmetric, so that FH = 

FA; 
(b) absorption is a consequence of F~ only, so 

that FH is real. The linear absorption coefficient is 
related to Fg by 

tx= 2AF'~Nc. (18) 

The quantity 3, of magnitude 210  -5, was introduced 
by Zachariasen (1945) such that the refractive index 
is 1 + & In the notation of this paper 

23 = -A sin OBAk + ele2(A 2NclF'n[/ ~) 
x [ ( y +  ig) 2 -  1] u2 (19) 

for the symmetric Bragg case. In (19) the square root 
having a positive real part is implied. The indicators 
el and e2 each take the values +1. For y #.0 (or, in 
the case g = 0, for lyl> 1), el is equal to sign (y) while 
e2 is equal to +1 for the incident beam (3i) and -1  
for the diffracted beam (3 r). 
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The variables y and g, which are also used by 
Zachariasen (1945), are given by 

F~ rr sin 08 
y -  i V,n + - ~  ~F-7~H I A k, g=-F'~/  F'H . 

7. The relationship between Ak and AK 

The incident and diffracted wave vectors within the 
crystal will be denoted by K, and Kf respectively. 
Also, 

K2 = k~(1 +28,).  (20) 

It will be assumed that the crystal is set in the sym- 
metric Bragg position. A coordinate system is chosen 
such that the x axis is in the plane defined by k / a n d  
k s and is parallel to the surface of the crystal. The z 
axis is the outwardly directed normal to the crystal 
surface. The origin of coordinates is at the crystal 
surface. 

The x and z components of k~ and Ki will be 
denoted by k,x, K,x and k,z, Kiz respectively. In the 
symmetric Bragg setting the scattering vector within 
the crystal is defined by 

K = -2Kiz~.  

Then 

AK = -2Kiz  - ks. (21) 

For continuity across the crystal surface the com- 
ponents of k and K parallel to the surface are equal. 
Then 

Kix  = kix. (22) 

Squaring (22) and subtracting the result from (20) 
one gets 

K ,% 2 = kiz + 2ki 6i. (23) 

Now 

k,z = - k i  sin 08 
(24) 

g 2 2 
iz = k i z (1  -t-2tSi c o s e c  2 0 8 ) .  

Upon taking the square root, which is justifiable for 
glancing angles not close to zero, 

K~z = k,z(1 + 6, cosec 2 0B), (25) 

then applying (21) 

A K  = Ak + 2kfi, cosec 08 

and substituting for ~i from (19), one gets 

A K  = (ANclF'HI/~r sin OB)e,[(y+ ig )2 -1]  1/2. (26) 

The quantity AK can be written as AK = A K ' +  iAK". 
Then, with the variables Y and G defined by 

Y = [~r(sin OB)/lF'.lNc;t]zig' (27) 

G = [Tr(sin O~,)/If'.lN~A],ag", (28) 

(26) becomes 

( Y +  i G ) 2 = ( y +  ig) 2 -  1. (29) 

Upon equating the real and imaginary parts in 
equation (29) and solving for Y and G, one obtains 
the relations 

Y :  e , [½(L- 2 8 2 - 1 ) ]  '/2 

G = - [ ½ ( L - 2 y 2 +  1)] ~/2 

where 

(30) 

(31) 

L = l [ ( y 2 - g 2 - 1 ) 2 + 4 ( g y ) 2 ] [ ' / 2 + y Z + g  2. (32) 

This last quantity is the same as Zachariasen's (1945) 
quantity L when F~  = 0. The desired quantity AK' 
is given by substituting (30) into (27). 

The imaginary part, AK", proportional to G, rep- 
resents exponential attenuation of the wave. It arises 
in part from absorption (through g) and in part from 
a second effect, which is present even when tz = 0, 
namely Bragg reflection of neutrons that lie in the 
energy gap ( y[ < 1) of the crystal. 

8. The Ewald solution 

For this case/z = 0,/xD - 0, D ~ oo then (16) becomes 

o ' (Ak )=QkTs in2 ( ' n 'TAK ' ) / ( ' t rTAK ' )  2. (33) 

The profile of the diffracted beam is obtained by 
inserting o-(_4k), given by (33), into (6). 

Development of the formulae is made clearer by 
adoption of the variable (also used by Zachariasen, 
1945) 

A =  ANcIF'H[T/sin 08 = ANcIF'.ID. (34) 

Then 

and 

o-(Ak) = sin 2 ( A Y ) / D Y  E (35) 

P f / P ° = s i n 2 ( A y ) / [ Y 2 + s i n 2 ( A Y ) ] .  (36) 

For A large the trigonometric expressions oscillate 
rapidly and the individual oscillations usually cannot 
be resolved. Hence (36) may be replaced by its 
average over one cycle, centred on Y, which is 

Y+rr/(2A) 

(A/rr )  ~ s in2 (Au) / (u2+s in2  A u ) d u .  
Y - ~ / ( 2 A )  

Under conditions where the first term in the 
denominator may be treated as a constant, equal to 
y2, the integral is readily evaluated via the identity 
sin2t =½(1-cos  2t), the change of variable x = 2Au  
and the standard integral (Speigel, 1968) 

211" 

[. ( a + b c o s x )  -1 d x = 2 7 r ( a Z - b Z )  -uz.  
0 

The 'constancy' assumption is valid provided A] YI >> 
1 or, equivalently, lyl- 1 >> A -z, from (28). Hence for 
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~iny y outside the region of perfect reflection ([y[-< 1), 
the result holds for sufficiently large A. 

The power ratio becomes 

P,-/ P°= I - [  yE/( y2 + I)]'/~. (37) 

The substitution y2 = y2_ 1 then gives 

Pf/ P0 = 1 - ( 1 -  1/y2) u2 (38) 

which is the Ewald result. 
For the earlier result, (36), which was derived 

without going to the limit D-~ o0, only the condition 
IZ = 0 was required. Thus, (36) gives the prediction 
of the present theory for the full evolution of the 
profile from the kinematic non-absorbing limit to the 
Ewald limit. For the case of a neutron in the energy 
gap ([y[ < 1), (36) must be interpreted as the limit as 
Y-* 0, that is 

Pf/ P°i = A2/ ( l + A2 ). 

Thus, the predicted profile has a 'flat top' in the gap. 
Comparison with Zachariasen's (1945) equations 
[3.143], [3.144] shows exact agreement outside the 
gap but disagreement inside. The integrated 
intensities agree exactly in both the kinematic limit 
( A ~ 0 )  and the Ewald limit ( A o ~ ) ;  the maximum 
disagreement in the integrated intensities occurs near 
A -  1.6 and amounts to only 6%. 

9. The Darwin solution 

For this case,/z ~ 0, p.D >> 1 and, since IzD >> 1, (16) 
becomes 

o'(Ak)= QktxDT/2{(lxD/2)2 +(~TAK')  2} (39) 

and (5) becomes 

PflP°={[2p, lo'+(l~/o')2]'/z+p,/o'+ l}-~ (40) 

where, using (27) and (34) in (39) 

~/o=(2/A2)[(~D/2)2+A2Y2].  (41) 

Introduction of the quantity, also used by 
Zachariasen (1945), 

g=-tz/Z,~Nc F'n (42) 

means that, from (30) and (42), (41) becomes 

p/or = 2(g2+ y2)=  L - 1  (43) 

and, from (40), 

psi pO= 1 + ( ~ / ~ ) -  {[1 + (~/~)]2_ 1}1/2 

= L - ( L Z - 1 )  uz. (44) 

When the substitution g = 0  is made, this result 
reduces to the Darwin result. But the result (40) was 
derived without going to the limit ~ ~0 ;  only the 
condition p,D >> 1 was assumed. The corresponding 
result of Zachariasen (1945) is given by his equation 
[3.190]; the present result agrees exactly. 

At this point a useful result can be derived, to which 
Zachariasen (1945) gave only a 'crude approxima- 
tion'. For Jgl << 1, by applying the binomial theorem 
to (32) and (44), the following power series in g is 
obtained: 

L =  1 + 2 ( 1 - y 2 ) - 1 g 2 + . . .  

Pf/Po = 1 - 2 ( 1 - y 2 )  -'/2 g + . . . .  (45) 

The two terms on each right-hand side dominate the 
remaining terms provided that y is in the gap ( Yl < 1) 
and not near either edge. By integrating (45) from 
y = -  1 to +1 and ignoring y outside the gap, 

R=8-Z~ lg [=S(1 -Z .36 [g [ )  (46) 

where R is the integrated intensity on the y scale. A 
closer analysis verifies that the second term in (46) 
correctly gives the leading term in the departure of 
R from the Darwin value of 8/3. The first neglected 
term in R is of the order of g 3/2 at most. The term 
in ]g] is in close agreement with the empirical result 
of Hirsch & Ramachandran (1950) who obtain R = 
(8/3)(1-2.41g ). 

10. Discussion 

It has been demonstrated that the Hamilton-Darwin 
equations, the kinematic diffraction profile from a 
small absorbing crystal and inclusion of the dynamic 
refractive index of the crystal lead to the classic Ewald 
and Darwin solutions for both the diffraction profile 
and integrated intensity from the semi-infinite fiat 
plate. Unlike the conventional dynamical theory 
spatial coherence between scattering centres over 
large volumes of crystal is not required explicitly in 
the present theory. However, the parameter T on 
which o- depends is sensitive to the size of the spatially 
coherent region and allows distinction between scat- 
tering from, for example, a monolithic block of per- 
fect crystal and a scatterer consisting of slices of 
perfect crystal separated by random displacements 
but untilted with respect to each other. 

The theoretical methods presented above will be 
used to examine the diffraction profiles and integrated 
intensities from finite crystals, mosaic and distorted 
crystals. 

This work was supported by the Australian 
Research Council. 

APPENDIX 

The kinematic result 

It is shown that, in two separate limiting cases, 
Zachariasen's equation reduces to the desired kin- 
ematic result. It is then shown that the case of vanish- 
ingly small reflected power always reduces to one or 
other of the above limits. 
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Zachariasen's equation [3.139] contains the quan- 
tities 0o, qJH, q, z, a, v and w defined by 

Oo= - A  2 FoN~/  Tr (A-l )  

qj ,  = - A 2 F n N ~ I  Tr. (A-2) 

For the symmetric Bragg case 

q =  - 0h,~A (A-3) 

Z = O o + ( A 2 / 2 ) k n A k  (A-4) 

a = 7rT /A  sin 0B (A-5) 

v +  iw = (q  + z2) I/2 (A-6) 

with v and w real. 
First consider the limit Izl>>lqll< Then (a-6)  

becomes v +  iw = +z  whence, from ( A - 4 ) ,  

v = A 2 [ - F ' o N c / T r + ( k B / 2 ) A k ]  (A-7) 
2 tt w = - A  F o N c / T r  (A-8) 

where Fo = F'o + iF~,  and F~ is related to the absorp- 
tion coefficient/z by 

/z = 2AF~Nc. (A-9) 

Then the numerator of [3.139] is readily evaluated. 
Throughout the five terms in the denominator, q may 
be neglected; the third and fifth terms then vanish. 
The denominator then becomes 

D = z 211 +2  sinh 2 [awl+sinh 2 a w  ] 

= zl 2 exp 2 a w  

= (v2+w 2) exp 2 a w  I 

and the power ratio [3.139] becomes (17) with the 
F~ correction for the static refractive index included. 

Secondly, consider the limit in which aql/2<< 1 
and z <<- q 1/2 (i.e. z is less than or of the same order 
or magnitude as q 1/2). Then 

laz 2 << 1, avl<< 1, a w  << 1. 

Then it can be shown (the argument is simple in the 
subcase Iq + z2l- Iql  but very lengthy in the subcase 
q +z2 << Iql) that in the denominator  of [3.139] the 

first term swamps each of the other four terms. Then 
the power ratio reduces to the value 

Q k T D  (A-10) 

to which (17) also reduces in this limit. 

The condition for small reflected power is 

A<< 1 or A(p~D)-I<< 1 (A-11) 

where A is given by (34). In the first case the scattered 
intensity is low because the crystal is thin; in the 
second case it is low because the absorption length 
(/z -l)  is small. 

In Zachariasen's notation (A-11) becomes 

aq 1/2 << 1 or Iq t~/qt~  << 1. (A-12) 

In the second of these cases, Izl >> [ql 1/2 due to the 
large imaginary part of z. This case is therefore 
covered by the first of the limits already discussed in 
this Appendix. 

In the first of the limits in (A-12) there are two 
subcases: first Izl>>lql '/2 (i.e. k far outside Ewald's 
region of perfect reflection) and, second, Izl<-Iql 
These subcases are covered respectively by the first 
and second limits already discussed in this Appendix, 
giving agreement with (17) under the respective con- 
ditions. Under conditions of small reflected power 
the profile has a width on the z scale much greater 
than Iql l/=, so that almost all the integrated intensity 
comes from values of k to which the first limit applies. 

It is worth noting that this paper eventually applies 
(17) to a non-thin crystal (laql/21 >~ 1). Then the profile 
sharpens and eventually becomes concentrated in the 
region Izl ~ Iql '/2 where the first limit discussed above 
does not apply and the full conditions of the second 
limit are not met. This is why it becomes necessary 
to take into account the dynamic refractive index of 
the crystal. 
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